
compass-security.com 1

Defeat Exploit Mitigation

Heap Attacks

compass-security.com 2

Exploit

Mitigations

DEP

PIE

ASLR

Stack

Canary

ASCII Armor

Partial RIP Overwrite

Brute Force

Heap Overflows

Overflow Local Vars

Arbitrary Write

NOP Slide

Info Disclosure

Ret 2 PLT

ROP

compass-security.com 3

Content:

▪ About vulnerability counting

▪ UAF Explained

▪ UAF Example

▪ What is Object Orientation

▪ Vtables

▪ Garbage collection

▪ Stack pivoting

▪ Other heap attacks

▪ Heap massage

Content

compass-security.com 4

Heap Attacks:

Alternative for stack based buffer overflow to perform memory corruption

Heap Attack Types:

▪ Use after free

▪ Double Free

▪ Intra-chunk heap overflow

▪ Inter-chunk heap overflow

▪ Type confusion

Heap Attacks

compass-security.com 5

Intermezzo

Heap Attacks:

Use After Free (UAF)

compass-security.com 6

Use After Free

compass-security.com 7

Use After Free

compass-security.com 8

Use after free

compass-security.com 9

Intermezzo:

▪ Secure products:

▪ Mention security fixes (don’t hide it)

▪ Have a website with all fixed security vulnerabilities

▪ As pentest: Can see which vulnerabilities are in which versions

▪ Vendor is open, up to date and ready for security issues

▪ Bad products:

▪ Don’t have a page with vulnerabilities

▪ Don’t mention security fixes in changelogs

▪ Vendor hides, doesn’t handle, obfuscate security issues

Security: Vulnerability lists

compass-security.com 10

CVE:

▪ Common Vulnerabilities and Exposures

▪ A vulnerability get a CVE (e.g. CVE-2017-1234)

▪ Which software is affected

▪ Which version

▪ When did it got fixed

▪ …

Security: CVE

compass-security.com 11

Security: CVE

compass-security.com 12

Security: CVE

compass-security.com 13

Weakness comparison fails: (not just CVE)

▪ Scope: “Windows vs Linux”

▪ What is in Linux? Linux Kernel? Suse? LIBC? Bash? Apache?

▪ What is in Windows? Internet Explorer? IIS?

▪ Severity mismatch

▪ When is a vulnerability “critical”? When is it “high”?

▪ Microsoft categorizes differently than Mozilla, or Google

▪ Number of vulnerabilities in CVE / bulletin

▪ 1 vulnerability, one CVE / securtiy bullettin ?

▪ 1 CVE for each product affected? (Cisco: RCE in product x, y, z)

▪ 1 CVE for each individual bug? (e.g. UAF in component x, y, z)

▪ Vulnerablity disclosure

▪ CVE’s for all the bugs found internally? (e.g. fuzzing)

▪ CVE for all the bugs found by looking for similar bugs?

▪ …

-> Don’t compare different product’s security issues by counting <-

Security: CVE

compass-security.com 14

FF

IE

compass-security.com 15

Introduction

Heap Attacks:

Use After Free (UAF)

compass-security.com 16

UAF:

Use after free

Or more correctly:

Use a an object, after the memory it has been pointing to has been freed,

and now a different object is stored at that location

Heap Attack: UAF

compass-security.com 17

So, what is UAF?

▪ We have a pointer (of type A) to an object

▪ The object get’s free()’d

▪ This means that the memory allocater marks the object as free

▪ The object will not be modified!

▪ (Similar to deleting a file on the harddisk)

▪ The pointer is still valid

▪ Another object of type B (of the same size) get’s allocated

▪ Memory allocator returns the previously free’d object memory space

▪ Attacker has now a pointer (type A) to another object (type B)!

▪ This object can be modified

▪ Depending on the types A and B

Heap Attack: UAF

compass-security.com 18

Example: heapnote.c:

▪ Has: Todos

▪ Can add, remove and edit a Todo

▪ Has two todo lists:

▪ Work

▪ Private

▪ Todo’s are created in one list

▪ Todo’s can be added to the other list

▪ Has: Alarms

▪ Can add, remove and edit Alarms

▪ Alarms are managed in a separate Alarm list

▪ Note: I tried to make a simple as possible tool which is vulnerable to UAF, not a real tool. Therefore, it

does not fully makes sense. Sorry.

Heap Attack: UAF

compass-security.com 19

Heapnote.c:

Todo's:

todo add <list> <prio> <todotext>

todo edit <list>:<entry> <prio> <todotext>

List:

todolist view <list>

todolist add <listDst> <listSrc>:<entry>

todolist del <list> <entry>

Alarm:

alarm add <alarmText>

alarm list

alarm view <alarmIndex>

alarm del <alarmIndex>

Heap Attack: UAF

compass-security.com 20

Heap Attack: UAF

struct Todo {
char *body;
int priority;
int id;

}

struct Alarm {
char *name;
void (*fkt)()
int id;

}

compass-security.com 21

Heap Attack: UAF

char *body

Struct Todo:

int priority

int id

char *name

Struct Alarm:

void (*cleanup)()

int id

struct Todo {
char *body;
int priority;
int id;

}

struct Alarm {
char *name;
void (*fkt)()
int id;

}

+0

+8

+16

compass-security.com 22

Heap Attack: UAF Heap

0

Todo

*work[3]

0

0

0

Todo

*private[3]

0

0

0

Alarm

*alarms[3]

0

0

compass-security.com 23

Step 1: Add a “Todo”

Heap UAF: Noteheap

compass-security.com 24

0

Todo

*work[3]

0

0

0

Todo

*private[3]

0

0

todo add work 123 “test”

char *body

Struct Todo:

int priority

int id

compass-security.com 25

0

&body

123

&todo

Todo

*work[3]

0

0

0

Todo

*private[3]

0

0

todo add work 123 “test”
todo = malloc(sizeof(Todo))
todo->body = strdup(“test”)
todo->prio = 123;
todo->id = 0;
work[0] = todo;

char *body

Struct Todo:

int priority

int id

s
tr

u
c

t
T

o
d

o

compass-security.com 26

Step 2: Add the (previously inserted) Todo

from the “work” list to the “private” list

Heap UAF: Noteheap

compass-security.com 27

&todo

Todo

*work[3]

0

0

0

Todo

*private[3]

0

0

list add private work:0

char *body

Struct Todo:

int priority

int id

0

&body

123

compass-security.com 28

&todo

Todo

*work[3]

0

0

&todo

Todo

*private[3]

list add private work:0
private[0] = work[0];

char *body

Struct Todo:

int priority

int id

0

&body

123

compass-security.com 29

Step 3: Delete the “Todo” (via “work” list)

Heap UAF: Noteheap

compass-security.com 30

&todo

Todo

*work[3]

0

0

&todo

Todo

*private[3]

list del work:0

char *body

Struct Todo:

int priority

int id

0

&body

123

compass-security.com 31

0

Todo

*work[3]

0

0

&todo

Todo

*private[3]

list del work:0
free(work[0]->body);
free(work[0]);
work[0] = NULL;

char *body

Struct Todo:

int priority

int id

0

&body

123

compass-security.com 32

Heap

0

Todo

*work[3]

0

0

&todo

Todo

*private[3]

list del work:0
free(work[0]->body);
free(work[0]);
work[0] = NULL;

char *body

Struct Todo:

int priority

int id

0

&body

123

FAIL!

private[] list still

has a pointer to

memory region

where the

object was

stored

compass-security.com 33

0

Todo

*work[3]

0

0

&todo

Todo

*private[3]

list del work:0
free(work[0]->body);
free(work[0]);
work[0] = NULL;

char *body

Struct Todo:

int priority

int id

0

&body

123 Data is still in

memory

But object is

“free”

compass-security.com 34

Step 4: Add an “Alarm”

Heap UAF: Noteheap

compass-security.com 35

0

Alarm

*alarms[3]

0

0

&todo

Todo

*private[3]

0

&body

123

alarm add “test”

compass-security.com 36

&alarm

Alarm

*alarms[3]

0

0

&todo

Todo

*private[3]

alarm add “test”
alarm = malloc(sizeof(Alarm));
alarm->name = strdup(“test”);
alarm->cleanup = &cleanupFkt;
alarm->id = 0;
alarms[0] = alarm;

0

&name

&cleanup

char *name

Struct Alarm:

void (*cleanup)()

int id

compass-security.com 37

Step 5: Edit the “Todo” (via “private” list)

Heap UAF: Noteheap

compass-security.com 38

&alarm

Alarm

*alarms[3]

0

0

&todo

Todo

*private[3]

todo edit private:0 456 “AA”

char *name

Struct Alarm:

void (*cleanup)()

int id

char *body

Struct Todo:

int priority

int id

0

&name

&cleanup

compass-security.com 39

&alarm

Alarm

*alarms[3]

0

0

&todo

Todo

*private[3]

todo edit private:0 456 “AA”
todo = todos[0];
todo->body = strdup(“AA”);
todo->priority = 456;

0

&body

456

char *name

Struct Alarm:

void (*cleanup)()

int id

char *body

Struct Todo:

int priority

int id

compass-security.com 40

Heap

&alarm

Alarm

*alarms[3]

0

0

&todo

Todo

*private[3]

0

&body

456

char *name

Struct Alarm:

void (*cleanup)()

int id

char *body

Struct Todo:

int priority

int id

compass-security.com 41

Heap

int id | int id

&name | &body

&cleanup() | int priority

char *name

Struct Alarm:

void (*cleanup)()

int id

char *body

Struct Todo:

int priority

int id

compass-security.com 42

Heap UAF: Noteheap

todo edit private:0 456 “AA”
todo = todos[0];
todo->body = strdup(“AA”);
todo->priority = 456;

did the same as:
alarm = alarms[0];
alarm->name = strdup(“AA”);
alarm->cleanup = 456;

compass-security.com 43

Result:

▪ We allocated a “Todo” object

▪ We had two references to this “Todo” object: in “work” and “private” list

▪ We free’d the “Todo” object, and removed the reference in “work” list

▪ BUT: We still have a reference to the “Todo” object in the “private” list

▪ We allocate an “Alarm” object

▪ The “Alarm” object was allocated where the initial “Todo” object was

▪ We still have a pointer to the initial “Todo” object via the “private” list

▪ If we modify the initial “Todo”, we change the “Alarm” object

▪ Therefore: We can modify the function pointer in the a”Alarm” object

Heap UAF: Noteheap

compass-security.com 44

Step 6: Delete the Alarm object

Heap UAF: Noteheap

compass-security.com 45

&alarm

Alarm

*alarms[3]

0

0

&todo

Todo

*private[3]

Alarm delete 0

0

&body

456

char *name

Struct Alarm:

void (*cleanup)()

int id

char *body

Struct Todo:

int priority

int id

compass-security.com 46

&alarm

Alarm

*alarms[3]

0

0

&todo

Todo

*private[3]

Alarm delete 0
alarm = alarms[0];
alarms[0] = NULL;

alarm->cleanup();
free(alarm->name);
free(alarm);

0

&body

456

char *name

Struct Alarm:

void (*cleanup)()

int id

char *body

Struct Todo:

int priority

int id

compass-security.com 47

The program is calling alarm->cleanup()

We can define where alarm->cleanup is pointing to

Therefore: Can call any memory location (continue code execution where we want it)

Heap UAF: Noteheap

compass-security.com 48

So, what is UAF?

▪ We have a pointer (of type A) to an object

▪ The object get’s free()’d

▪ This means that the memory allocater marks the object as free

▪ The object will not be modified!

▪ (Similar to deleting a file on the harddisk)

▪ The pointer is still valid

▪ Another object of type B (of the same size) get’s allocated

▪ Memory allocator returns the previously free’d object memory space

▪ Attacker has now a pointer (type A) to another object (type B)!

▪ This object can be modified

▪ Depending on the types A and B

▪ Can modify pointers, sizes etc.

Heap Attack: UAF

compass-security.com 49

vtables

Object Oriented Languages

compass-security.com 50

Dobin: “OO ist just some fancy C structs with function pointers”

OO in C:

typedef struct animal {

int (*constructor)(void *self);

int (*write)(void *self, void *buff);

void *data;

} AnimalClass;

AnimalClass animal;

animal.constructor = &constructor;

animal.data = malloc(…);

…

animal.constructor(&animal);

Object Oriented Languages

compass-security.com 51

C++ vtables

The virtual table is a lookup table

of functions used to resolve

function calls in a dynamic/late

binding manner.

Object Oriented Languages

compass-security.com 52

C++ vtables

Object Oriented Languages

http://www.learncpp.com/cpp-tutorial/125-the-virtual-table/

compass-security.com 53

Vtables

Object vtable

Vtable ptr Function1 ptr

Function2 ptr

Func1 impl

compass-security.com 54

Recap:

▪ OO languages heavily use function pointers

▪ C++ use vtables

▪ First element of object struct is pointer to vtable

▪ Vtables is an array of pointers to the appropriate functions

▪ OO is therefore particulary affected by UAF

Object Oriented Languages

compass-security.com 55

Garbage Collection

compass-security.com 56

Dobin: “Garbage collection is just fancy structs with reference counter”

typedef struct animal {

int (*constructor)(void *self);

int (*write)(void *self, void *buff);

void *data;

int refCount;

} AnimalClass;

AnimalClass animal;

animal.refCount = 0;

…

Animal animal2 = &animal;

Animal.refCount++;

Garbage Collection

compass-security.com 57

Objects keep track on how many references are to them

A separate thread (garbage collector) regularly checks the references on objects

Garbage collector free’s objects if they are not needed anymore (similar to a manual free)

Garbage Collection

compass-security.com 58

Recap:

▪ Garbage collector periodically free’s unused objects

Garbage Collection

compass-security.com 59

ROP: Stack Pivoting

compass-security.com 60

At an UAF:

Ok, we can call any function in memory (e.g. via alarm->cleanup())

What we want: Execute ROP chain

▪ Problem:

▪ We can call() any function

▪ But the stack pointer is not modified (unlike in a Stack based overflow)

ROP: Stack pivoting

compass-security.com 61

Remember: Stack overflow

ROP: Stack Pivoting

SIP (&<add>)SFPisAdmin
firstnam

e &pop/pop/ret 0x01 0x02

retret

&<add2>

ret

…

SP Stack pointer IP Instruction pointer

compass-security.com 62

Heap overflow:

ROP: Stack Pivoting

SIP (&<add>)SFPisAdminfirstname &pop/pop/ret 0x01 0x02

retret

&<add2>

ret

…

SP Stack pointer IP Instruction pointer

compass-security.com 63

Stack exploit:

▪ Overwrite SIP

▪ On return():

▪ pop EIP from ESP (get next instruction pointer from stack)

▪ Do stuff…

▪ pop EIP from ESP (get next instruction pointer from stack)

Heap exploit:

▪ Overwrite function pointer

▪ On call():

▪ Get next instruction from the function pointer (heap -> EIP)

▪ Do stuff…

▪ pop EIP from ESP (get next instruction pointer from stack)

▪ ESP points to user data

▪ CRASH

ROP: Stack pivoting

compass-security.com 64

Solution: Stack pivoting

Example stack pivot gadget:

mov esp, eax

▪ Precondition:

▪ EAX points to memory location we control

▪ After this gadget is executed:

▪ We have a “new stack” (at EAX location)

▪ SIP will be “taken from EAX” (memory location where EAX points to)

Other examples:

xchg esp, eax

add esp, 0x40c

ROP: Stack pivoting

compass-security.com 65

Stack pivoting recap:

▪ Gadgets use RET

▪ RET takes next IP from stack (SIP@ESP -> EIP)

▪ It can be necessary to move ESP (stack pointer) so a memory location we control

ROP: Stack pivoting

compass-security.com 66

Other Heap attacks…

compass-security.com 67

Heap Massage / Feng shui

compass-security.com 68

For attacks to work, the heap needs to be in a predictable state

▪ Allocation of objects:

▪ In place of an existing pointer (UAF)

▪ Close to each other (inter-chunk overflow)

▪ Beginning/End of a BIN (inter-chunk overflow)

Heap Massage

compass-security.com 69

Solution:

▪ Heap massage / heap grooming / heap feng-shui

Allocate/Deallocate objects before (and during) the exploit to put the heap in a predictable state

Objective:

▪ Allocations should put the allocated chunks in a specific order

▪ E.g.: inter-chunk overflow

▪ Put a chunk to free “on top” of the chunk to overflow

Heap massage

compass-security.com 70

Example:

Allocate 10’000 chunks of 64 byte size

Free one

▪ Perform overflow

▪ Allocate a vulnerable chunk

▪ Overflow into the next chunk

Free() all other 99’999 chunks

Profit!

Heap massage

compass-security.com 71

Conclusion

compass-security.com 72

Heap-based attacks are very powerful

They are currently state-of-the-art

Heap Attacks: Conclusion

