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Content

Content:
= About vulnerability counting
= UAF Explained
= UAF Example
= What is Object Orientation
= Vtables
= Garbage collection
= Stack pivoting
= Other-heap-attacks

= Heap massage
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Heap Attacks

Heap Attacks:
Alternative for stack based buffer overflow to perform memory corruption

Heap Attack Types:
» Use after free
» Double Free
= |ntra-chunk heap overflow
= |nter-chunk heap overflow
» Type confusion
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Heap Attacks:
Use After Free (UAF)

Intermezzo




Use After Free
WebKit

Available for: iPhone 5 and later, iPad 4th generation and later, iPod touch 6th generation and later
Impact: Processing maliciously crafted web content may lead to arbitrary code execution

Description: A use after free issue was addressed through improved memory management.

CVE-2017-2471: lvan Fratric of Google Project Zero
Kernel

Available for: iPhone 5 and later, iPad 4th generation and later, iPod touch 6th generation and later
Impact: An application may be able to execute arbitrary code with kernel privileges

Description: A use after free issue was addressed through improved memory management.

libc++abi
Available for: iPhone 5 and later, IPad 4th generation and later, iPod touch 6th generation and later
Impact: Demangling a malicious C++ application may lead to arbitrary code execution
Description: A use after free issue was addressed through improved memory management.

CVE-2017-2441




Use After Free

Fixed in Firefox 48

2016-84
2016-83
2016-82
2016-81
2016-80
201679 |
201678 |
201677 |

2016-76

2016-75

2016-74

2018-71

2016-70

2016-69

Information disclosure through Resource Timing API during page navigation
Spoofing attack through text injection into internal error pages

Addressbar spoofing with right-to-left characters on Firefox for Android

Information disclosure and local file manipulation through drag and drop
Same-origin policy violation using local HTML file and saved shortcut file
Lse-aftE"-u when applying SVG effects

Type confusion in display transformation

Buffer overflow in ClearKey Content Decryption Module (CDM) during video playback
SCripts on marguee tag can execute in sandboxed iframes

Integer overflow in WebSockets during data buffering

Form input type change from password to text can store plain text password in
session restore file

Use-after-free in service workers with nested sync events
Use-after-free in DTLS during WebRTC session shutdown
Crash in incremental garbage collection in Javascript
Use-after-free when using alt key and toplevel menus

Arbitrary file manipulation by local user through Mozilla updater and callback

use-after-free
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Use after free

Security Fixes and Rewards

Note: Access to bug details and links may be kept restricted until a majority of users are updated with a
fix. We will also retain restrictions if the bug exists in a third party library that other projects similarly
depend on, but haven't yet fixed

This update includes 36 security fixes. Below, we highlight fixes that were contributed by external
researchers. Please see the Chrome Security Page for more information.

[$7500][682194] High CVE-2017-5030: Memory corruption in V8. Credlit to Brendon Tiszka
[$5000][682020] High CVE-2017-5031: Use after free in ANGLE. Credit to Looben Yang
[$3000][668724] High CVE-2017-5032: Out of bounds write in PDFium. Credit to Ashfag Ansari -
Project Srishti

[$3000][676623] High CVE-2017-5029: Integer overflow in libxslt. Credit to Holger Fuhrmannek
[$3000][678461] High CVE-2017-5034: Use after free in PDFium. Credit to Ke Liu of Tencent's
Xuanwu LAB

[$3000][688425] High CVE-2017-5035: Incorrect security Ul in Omnibox. Credit to Enzo Aguado
[$3000][691371] High CVE-2017-5036 Use after free in PDFium. Credit to Anonymous
[$1000][679640] High CVE-2017-5037- Multiple out of bounds writes in ChunkDemuxer. Crediit fo
Yongke Wang of Tencent's Xuanwu Lab (xlab tencent com)

[$500][679649] High CVE-2017-5039: Use after free in PDFium. Credit to jinmo123

[$2000][691323] Medium CVE-2017-5040- Information disclosure in V8. Credit to Choongwoo Han
[$1000][642490] Medium CVE-2017-5041- Address spoofing in Omnibox. Credit to Jordi Chancel
[$1000][662086] Medium CVE-2017-5033 Bypass of Content Security Policy in Blink. Credit to Nicolal
Grodum

[$1000][671932] Medium CVE-2017-5042: Incorrect handling of cookies in Cast. Credit fo Mike Ruddy
[$1000][695475] Medium CVE-2017-5038: Use after free in GuestView. Credit to Anonymous
[$1000][683523] Medium CVE-2017-5043: Use after free in GuestView. Credit to Anonymous
[$1000][588287] Medium CWVE-2017-5044: Heap overflow in Skia. Credit to Kushal Arvind Shah of
Fortinet's FortiGuard Labs

[$500][667079] Medium CVE-2017-5045: Information disclosure in XSS Auditor. Credit to Dhaval Kapil

(vampire)
- [$500][680409] Medium CVE-2017-5046: Information disclosure in Blink. Credit fo Masato Kinugawa _




Security: Vulnerability lists

Intermezzo:

= Secure products:
» Mention security fixes (don'’t hide it)
» Have a website with all fixed security vulnerabilities
= As pentest: Can see which vulnerabilities are in which versions

= Vendor is open, up to date and ready for security issues

» Bad products:
= Don’t have a page with vulnerabilities
» Don’t mention security fixes in changelogs

= Vendor hides, doesn’t handle, obfuscate security issues
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Security: CVE

CVE:
= Common Vulnerabilities and Exposures
= A vulnerability get a CVE (e.g. CVE-2017-1234)
= Which software is affected
= Which version
= When did it got fixed
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Security: CVE

Weakness comparison fails: (not just CVE)
= Scope: “Windows vs Linux”
» Whatis in Linux? Linux Kernel? Suse? LIBC? Bash? Apache?
» What is in Windows? Internet Explorer? [IS?

Severity mismatch
» When is a vulnerability “critical”? When is it “high™?
= Microsoft categorizes differently than Mozilla, or Google

Number of vulnerabilities in CVE / bulletin
» 1 vulnerability, one CVE / securtiy bullettin ?
= 1 CVE for each product affected? (Cisco: RCE in product X, y, z)
» 1 CVE for each individual bug? (e.g. UAF in component X, vy, z)

Vulnerablity disclosure
» CVE's for all the bugs found internally? (e.g. fuzzing)
= CVE for all the bugs found by looking for similar bugs?

-> Don’t compare different product’s security issues by counting <-
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Vulnerabilities by type & year

Vulnerabilities by type & year
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Heap Attacks:
Use After Free (UAF)

Introduction




Heap Attack: UAF

UAF:

Use after free

Or more correctly:

Use a an object, after the memory it has been pointing to has been freed,

and now a different object is stored at that location
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Heap Attack: UAF

So, what is UAF?
= We have a pointer (of type A) to an object
* The object get's free()'d
* This means that the memory allocater marks the object as free
» The object will not be modified!
= (Similar to deleting a file on the harddisk)
= The pointer is still valid
= Another object of type B (of the same size) get’s allocated
= Memory allocator returns the previously free'd object memory space

= Attacker has now a pointer (type A) to another object (type B)!
» This object can be modified
= Depending on the types A and B
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Heap Attack: UAF

Example: heapnote.c:
» Has: Todos

» Can add, remove and edit a Todo

» Has two todo lists:
= Work
= Private

» Todo’s are created in one list

» Todo’s can be added to the other list

= Has: Alarms
= Can add, remove and edit Alarms
» Alarms are managed in a separate Alarm list

= Note: | tried to make a simple as possible tool which is vulnerable to UAF, not a real tool. Therefore, it
does not fully makes sense. Sorry.
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Heap Attack: UAF

Heapnote.c:
Todo's:
todo add <list> <prio> <todotext>
todo edit <list>:<entry> <prio> <todotext>

List:
todolist view <list>
todolist add <listDst> <listSrc>:<entry>

todolist del <list> <entry>

Alarm:
alarm add <alarmText>
alarm list
alarm view <alarmIndex>

alarm del <alarmIndex>

compass-security.com




Heap Attack: UAF

struct Todo { struct Alarm {
char *body; char *name;
int priority; void (*fkt) ()
int id; int 1id;
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Heap Attack: UAF

struct Todo { struct Alarm {
char *body; char *name;
int priority; void (*fkt)()
int id; int id;
} }
Struct Todo: Struct Alarm:
+0 char *body char *name
+8 int priority void (*cleanup) ()
+16 int 1id int 1d




Heap Attack: UAF Heap

Todo Todo
*work([3] *private[3]
0 0
0 0
0 0

Alarm
*alarms[3]
0
0

0
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Heap UAF: Noteheap

Step 1: Add a “Todo”
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Todo

Todo
*work[3] *private[3]
0 0
0 ; ; 0
0 . 0
Struct Todo:
char *body

_____________________________________

int priority

int id
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Todo Todo
*work[3] *private[3]
&todo 0
0 0
0 R} o 0
&body | B
=
Struct Todo: 123 3
char *body 0 Rz

int priority

int 1id
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Heap UAF: Noteheap

Step 2: Add the (previously inserted) Todo
from the “work” list to the “private” list
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Todo

Todo
*work[3] *private[3]
&todo 0
0 0
0 X 0
&body
Struct Todo: 123
char *body 0

int priority

int id
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Todo

Todo
*work[3] *private[3]
&todo &todo
0
0 > <
&body

Struct Todo: 123
char *body 0

int priority

int id
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Heap UAF: Noteheap

Step 3: Delete the “Todo” (via “work” list)

compass-security.com




Todo

Todo
*work[3] *private[3]
&todo &todo
0
0 > <
&body

Struct Todo: 123
char *body 0

int priority

int id
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Todo

Todo
*work([3]

*private[3]
&todo

Struct Todo: 123
char *body 0

int priority

int 1id
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list del work:g@
free(work[g

>body) ;

Todo _ Todo
*work[3] \-Z | LI,_ : *private[3]
&todo

chap

i ,

int id
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Todo

Todo
*work[3]

*private[3]
&todo

Struct Todo: 123
char *body 0

int priority

int 1id
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Heap UAF: Noteheap

Step 4: Add an “Alarm”
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Alarm Todo
*alarms([3] *private[3]
0 &todo
0
o | <
&body
123




Alarm

Todo
*alarms[3] *private[3]
&alarm &todo
0
0 > <
&name

Struct Alarm: &cleanup
char *name 0

void (*cleanup) ()

int id
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Heap UAF: Noteheap

Step 5: Edit the “Todo” (via “private” list)
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Alarm

Todo
*alarms[3] *private[3]
&alarm &todo
0
0 > <
&name

Struct Alarm: &cleanup Struct Todo:
char *name 0 char *body

void (*cleanup)()

int id

int priority

int id
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Alarm

Todo
*alarms[3] *private[3]
&alarm &todo
0
0 > <
&body

Struct Alarm: 456 Struct Todo:
char *name 0 char *body

void (*cleanup)()

int id

int priority

int id
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Alarm Todo

*alarms[3] *private[3]
&alarm &todo
0 H
0 > eap <
&body

Struct Alarm: / 456 Struct Todo:
char *name / 0 char *body
void (*cleanup)()/ int priority
int id int id
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Heap

A\ 4

N

&name | &body

&cleanup() | int priority
intid | int id

Struct Alarm'

Struct Todo:—
char *body

char *name

void (*cleanup) ()

int id

int priority

int id
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Heap UAF: Noteheap
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Heap UAF: Noteheap

Result:
= We allocated a “Todo” object
» We had two references to this “Todo” object: in “work” and “private” list
» We free’d the “Todo” object, and removed the reference in “work” list
= BUT: We still have a reference to the “Todo” object in the “private” list

» We allocate an “Alarm” object

= The “Alarm” object was allocated where the initial “Todo” object was
= We still have a pointer to the initial “Todo” object via the “private” list
= |[f we modify the initial “Todo”, we change the “Alarm” object

» Therefore: We can modify the function pointer in the a”’Alarm” object
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Heap UAF: Noteheap

Step 6: Delete the Alarm object
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Alarm

Todo
*alarms[3] *private[3]
&alarm &todo
0
0 > <
&body

Struct Alarm: 456 Struct Todo:
char *name 0 char *body

void (*cleanup)()

int id

int priority

int id
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Alarm Todo
*alarms[3] *private[3]
&alarm &todo
0
0 ,
&body

Struct Alarm: Struct Todo:
char *name char *body

void (*cleanup)() int priority

int id int id
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Heap UAF: Noteheap

The program is calling alarm->cleanup()

We can define where alarm->cleanup is pointing to

Therefore: Can call any memory location (continue code execution where we want it)
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Heap Attack: UAF

So, what is UAF?
= We have a pointer (of type A) to an object
* The object get's free()'d
* This means that the memory allocater marks the object as free
» The object will not be modified!
= (Similar to deleting a file on the harddisk)
= The pointer is still valid
= Another object of type B (of the same size) get’s allocated
= Memory allocator returns the previously free'd object memory space

= Attacker has now a pointer (type A) to another object (type B)!
» This object can be modified

= Depending on the types A and B

= Can modify pointers, sizes etc.
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Object Oriented Languages

vtables
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Object Oriented Languages

Dobin: “O0 ist just some fancy C structs with function pointers”

OO in C:
typedef struct animal {
int (*constructor) (void *self) ;
int (*write) (void *self, void *buff);
vold *data;

} AnimalClass;
AnimalClass animal;
animal .constructor = &constructor;

animal.data = malloc(..);

animal.constructor (&animal) ;
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Object Oriented Languages

C++ vtables

The virtual table is a lookup table
of functions used to resolve
function calls in a dynamic/late
binding manner.

compass-security.com

class Base

{ .

public:
FunctionPointer *__wvptr;
virtual void functionl() {};
virtual void function2() +};

};

class D1: public Base

1
public:
virtual void functionl{) {};

I

class DZ2: public Base

1

public:
virtual void function2{) {};

s




Object Oriented Languages

class Base
C++ vtables {
public:
B = =
o FunctionPolnter *__vptr;
vt >| Hase Viable virtual void functionl() {};
—— = virtual function1(); - function1(} virtual vold F.Jﬂ'-:'ti.i:lﬂzll::l {} :
—T- wvirtual function 2() - function2(} ]— :
D1: public Base class D1: F:'.Jt'].'i': Base
*_wptr; (inherited) » D1 Table { _
virtual function 1), - function(} F:I"I:ll 1 ': : ] ] .
| virtual void functionl{) {};
functionZ() +——
i
O []Utllili Base
T wptr; (inherited? w2 WTable ':-LIJE-S :IE . I::l Jbl .l e ?}GSE
wirtual function (), - function1() — {
function2() F'_J'_ﬂ. 1C:
virtual void functionz{) {};
http://Iwww.learncpp.com/cpp-tutorial/125-the-virtual-table/ ]‘ .
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Vtables

Object

vtable

Vtable ptr

| Function1l ptr

Function2 ptr




Object Oriented Languages

Recap:
» OO languages heavily use function pointers
= C++ use vtables
» First element of object struct is pointer to vtable
» Vtables is an array of pointers to the appropriate functions
» OO is therefore particulary affected by UAF
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Garbage Collection

Dobin: “Garbage collection is just fancy structs with reference counter”
typedef struct animal {
int (*constructor) (void *self);
int (*write) (void *self, void *buff);
void *data;
int refCount;

} AnimalClass;

AnimalClass animal;

animal.refCount = 0;

Animal animal? = &animal;

Animal.refCount++;
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Garbage Collection

Objects keep track on how many references are to them
A separate thread (garbage collector) regularly checks the references on objects

Garbage collector free’s objects if they are not needed anymore (similar to a manual free)
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Garbage Collection

Recap:
= Garbage collector periodically free’s unused objects
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ROP: Stack Pivoting




ROP: Stack pivoting

At an UAF:

Ok, we can call any function in memory (e.g. via alarm->cleanup() )

What we want: Execute ROP chain

= Problem:

= We can call() any function
= But the stack pointer is not modified (unlike in a Stack based overflow)
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ROP: Stack Pivoting

Remember: Stack overflow

arstnam isadmin | SFP | SIP (&<add>) | &pop/pop/ret | 0x01 | 0x02 | &<add2>
1\ 0\

ret ret ret
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ROP: Stack Pivoting

Heap overflow:

firstname | isadmin | SFP | SIP (&<add>) | &pop/pop/ret | Ox01 | 0x02 | &<add2>

N

ret ret ret
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ROP: Stack pivoting

Stack exploit:
= Overwrite SIP
= On return():
= pop EIP from ESP (get next instruction pointer from stack)
= Do stuff...
= pop EIP from ESP (get next instruction pointer from stack)

Heap exploit:
= Overwrite function pointer
= On call():
= Get next instruction from the function pointer (heap -> EIP)
= Do stuff...
= pop EIP from ESP (get next instruction pointer from stack)
= ESP points to user data
= CRASH
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ROP: Stack pivoting

Solution: Stack pivoting

Example stack pivot gadget:
mov esp, e€aXx
= Precondition:
= EAX points to memory location we control
= After this gadget is executed:
» We have a “new stack” (at EAX location)
= SIP will be “taken from EAX” (memory location where EAX points to)

Other examples:
xchg esp, eax

add esp, 0x40c
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ROP: Stack pivoting

Stack pivoting recap:
» Gadgets use RET
» RET takes next IP from stack (SIP@ESP -> EIP)
* |t can be necessary to move ESP (stack pointer) so a memory location we control
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Other Heap attacks...




Heap Massage / Feng shui




Heap Massage

For attacks to work, the heap needs to be in a predictable state

» Allocation of objects:
* |n place of an existing pointer (UAF)
= Close to each other (inter-chunk overflow)
= Beginning/End of a BIN (inter-chunk overflow)
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Heap massage

Solution:
» Heap massage / heap grooming / heap feng-shui

Allocate/Deallocate objects before (and during) the exploit to put the heap in a predictable state

Obijective:
= Allocations should put the allocated chunks in a specific order
= E.g.: inter-chunk overflow
= Put a chunk to free “on top” of the chunk to overflow
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Heap massage

Example:
Allocate 10°'000 chunks of 64 byte size
Free one

= Perform overflow
= Allocate a vulnerable chunk
= Qverflow into the next chunk

Free() all other 99’999 chunks
Profit!
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Conclusion




Heap Attacks: Conclusion

Heap-based attacks are very powerful

They are currently state-of-the-art
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