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HEAP

Defeat Exploit Mitigation

Heap Intro
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This slidedeck is not completely technically accurate

Should give an overview of heap exploitation concepts 

Heap Exploitation
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What is a heap?

▪ malloc() allocations

▪ Fullfill allocating and deallocating of memory regions

Heap usage:

▪ Global variables (live longer than a function)

▪ Can be big (several kilobytes or even megabytes)

Reminder: Stack usage:

▪ Function-local variables

▪ Relatively small (usually <100 or <1000 bytes)

Heap Introduction
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Heap:

▪ Dynamic memory (allocations at runtime)

▪ Objects, big buffers, structs, persistence, 

large things

▪ Slow, manually

Heap Introduction

Stack:

▪ Fixed memory allocations (known at compile 

time)

▪ Local variables, return addresses, function args

▪ Fast, automatic
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Userspace/OS can implement his own memory allocator

▪ Linux: ptmalloc2 (previously dlmalloc)

▪ Samba: talloc

▪ FreeBSD and Firefox: jemalloc

▪ Google: tcmalloc

▪ Solaris: libumem

▪ Basically: mmap() a memory block and manage it

Heap Introduction
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Heap in Linux

▪ Heap implementation is usually implemented in GLIBC

▪ Current Heap allocator implementation: ptmalloc2

▪ Based on dlmalloc

▪ From GLIBC 2.4 onwards

▪ Previous / Old: 

▪ Doug Lea’s memory allocator 

▪ Dlmalloc

▪ Note: If you research heap exploits, check what allocator is assumed to be used

Heap Introduction
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malloc(): Get a memory region

free(): Release a memory region

We only cover manual allocations

▪ Not: Automatic garbage collection

▪ (Garbage collection is just an automatic free() by using reference counting)

Heap introduction
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How does heap work?

void *ptr;

ptr = malloc(len)

▪ Allocated “len” size memory block

▪ Returns a pointer to this memory block

free(ptr)

▪ Tells the memory allocator that the memory block can now be re-used

▪ Note: ptr is NOT NULL after a free()

Heap Interface
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Heap Interface

Size of previous chunk

Size of chunk

Space

Chunk

ptr
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What is a heap allocator doing?

▪ Allocate big memory pages from the OS

▪ Manage this pages

▪ Split the pages into smaller chunks

▪ Make these chunks available to the program

Heap
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Heap – Simplified Example
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How is this implemented?

▪ The heap implementation gets a (big) block of flat/unstructured memory (page / pages)

▪ Partition the heap/page into bin’s

▪ A bin has chunks of the same size

Heap Introduction
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Heap: Memory Layout

Stack

Heap

Code

0xc0000000

0x0804800

0xbfffffff

0x0000000
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Heap: Memory Layout

Stack

Heap

Code

0xc0000000

0x0804800

0xbfffffff

0x0000000

Heap
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Page:

▪ A memory page

▪ Usually 4k

▪ Can also be 2 Megabytes or other

▪ Allocated via sbrk() or mmap()

Heap: Memory Layout

Page

Page

Page

Heap
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Heap: Memory Layout

Page

Page

Page

Heap

32b Chunk

32b Chunk

24b Chunk

24b Chunk

24b Chunk
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16b Chunk

16b Chunk
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16b Chunk

16b Chunk
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Heap: Oversimplified example

Heap

16 Byte Bin

24 Byte Bin

32 Byte Bin
32b Chunk

32b Chunk

24b Chunk

24b Chunk

24b Chunk

24b Chunk

P
a

g
e

P
a

g
e

P
a

g
e

16b Chunk

16b Chunk

16b Chunk

16b Chunk

16b Chunk



compass-security.com 19

Heap: Oversimplified example

Heap

ptr = malloc(16);

ptr

16
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Heap: Oversimplified example

Heap

ptr2 = malloc(16);

ptr
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Heap: Oversimplified example

Heap

ptr3 = malloc(32);

ptr
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ptr3
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Heap: Oversimplified example

Heap

free(ptr);

ptr
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Heap: Oversimplified example

Heap

ptr4 = malloc(16);

ptr

ptr2

ptr3
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Recap:

▪ Heap divides big (4k) memory pages into smaller chunks

▪ Heap gives these chunks to the program on request

▪ A pointer to a heap allocation points to the data part (the chunk contains more metadata)

Heap - Recap
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Heap Memory Management
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Heap Memory Management

How does the Heap

Know which chunks

Are free (to use)?

Heap
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Heap allocator requirements:

▪ Should be quick to fulfill malloc() and free()

▪ Should not waste memory by managing memory

▪ Also: No bugs, correct, low-fragmentation, etc.

Heap Memory Management
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▪ Heap allocator requirements:

▪ Should be quick to fulfill malloc() and free()

▪ Should not waste memory by managing memory

▪ Also: No bugs, correct, low-fragmentation, etc.

Heap Memory Management



compass-security.com 29

One possibility:

PHP7 – emalloc

▪ First chunk has management information

▪ Management chunk describes other chunks

▪ Which are free, how big are they etc. 

▪ (ok, emalloc allocates chunks from the OS, 

divides them into pages - so the oppositive

naming convention. That’s a detail). 

Heap Memory Management
Heap

Management chunk

- Free-chunk array
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Chunk2
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Heap could look like this:

Heap Memory Management
Management chunk

Chunk
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Chunk

Chunk
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But wait, there’s more!

Heap Memory Management
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Ptmalloc2 chunk:

Chunk

Size of previous chunk

Size of chunk

Space

Chunk A

Mem
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Ptmalloc2 FREE chunk:

Heap Chunks

Size of previous chunk

Size of chunk

Forward pointer to next chunk

Back pointer to previous chunk

Empty Space

Chunk

Mem
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Ptmalloc2 ALLOCATED chunk:

Heap Chunks

Usable Space

Size of previous chunk

Size of chunk

Forward pointer to next chunk

Back pointer to previous chunk

Chunk

Mem
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Free chunks close to each other get merged

Heap Chunks
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Heap attacks
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Heap attack:

Inter-chunk overflow

Heap Attacks: Buffer overflow
Management chunk
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Heap attack:

Inter-chunk overflow with management chunk

Problem:

▪ In-band signalling (again)

▪ Can modify management data of heap allocator

▪ Therefore, can modify behaviour of heap allocator

Heap Attacks: Buffer overflow
Management chunk
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Heap attack:

Inter-chunk overflow with chunk metadata

Problem:

▪ In-band signalling (again)

▪ Can modify management data of heap allocator

▪ Therefore, can modify behaviour of heap allocator

▪ Create fake chunks

▪ Ptmalloc2: Write what where upon free

Heap Attacks: Buffer overflow

Chunk

Chunk

Chunk

Size previous chunk

Size this chunk

Overflowmem

Size previous chunk

Size this chunk

Size previous chunk

Size this chunk
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Heap Attacks: Use after free (UAF)

Heap

err = malloc(16)

free(err)

usr = malloc(16);

…

strcpy(usr, “nobody”)

…

strcpy(err, “root err”);

err

16

16

usr
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Recap:

▪ A buffer overflow on the heap can modify other buffers on the heap

▪ A buffer overflow on the heap can influence memory allocator management data structures (junks etc.)

Heap Attacks
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Resources:

▪ http://homes.soic.indiana.edu/yh33/Teaching/I433-2016/lec13-HeapAttacks.pdf

▪ http://www.pwntester.com/blog/2014/03/23/codegate-2k14-4stone-pwnable-300-write-up/
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