
compass-security.com 1

HEAP

Defeat Exploit Mitigation

Heap Intro



compass-security.com 2

Exploit

Mitigations

DEP

PIE

ASLR

Stack 

Canary

ASCII Armor

Partial RIP Overwrite

Brute Force

Heap Overflows

Overflow Local Vars

Arbitrary Write

NOP Slide

Info Disclosure

Ret 2 PLT

ROP



compass-security.com 3

This slidedeck is not completely technically accurate

Should give an overview of heap exploitation concepts 

Heap Exploitation



compass-security.com 4

What is a heap?

▪ malloc() allocations

▪ Fullfill allocating and deallocating of memory regions

Heap usage:

▪ Global variables (live longer than a function)

▪ Can be big (several kilobytes or even megabytes)

Reminder: Stack usage:

▪ Function-local variables

▪ Relatively small (usually <100 or <1000 bytes)

Heap Introduction



compass-security.com 5

Heap:

▪ Dynamic memory (allocations at runtime)

▪ Objects, big buffers, structs, persistence, 

large things

▪ Slow, manually

Heap Introduction

Stack:

▪ Fixed memory allocations (known at compile 

time)

▪ Local variables, return addresses, function args

▪ Fast, automatic



compass-security.com 6

Userspace/OS can implement his own memory allocator

▪ Linux: ptmalloc2 (previously dlmalloc)

▪ Samba: talloc

▪ FreeBSD and Firefox: jemalloc

▪ Google: tcmalloc

▪ Solaris: libumem

▪ Basically: mmap() a memory block and manage it

Heap Introduction



compass-security.com 7

Heap in Linux

▪ Heap implementation is usually implemented in GLIBC

▪ Current Heap allocator implementation: ptmalloc2

▪ Based on dlmalloc

▪ From GLIBC 2.4 onwards

▪ Previous / Old: 

▪ Doug Lea’s memory allocator 

▪ Dlmalloc

▪ Note: If you research heap exploits, check what allocator is assumed to be used

Heap Introduction



compass-security.com 8

malloc(): Get a memory region

free(): Release a memory region

We only cover manual allocations

▪ Not: Automatic garbage collection

▪ (Garbage collection is just an automatic free() by using reference counting)

Heap introduction



compass-security.com 9

How does heap work?

void *ptr;

ptr = malloc(len)

▪ Allocated “len” size memory block

▪ Returns a pointer to this memory block

free(ptr)

▪ Tells the memory allocator that the memory block can now be re-used

▪ Note: ptr is NOT NULL after a free()

Heap Interface



compass-security.com 10

Heap Interface

Size of previous chunk

Size of chunk

Space

Chunk

ptr



compass-security.com 11

What is a heap allocator doing?

▪ Allocate big memory pages from the OS

▪ Manage this pages

▪ Split the pages into smaller chunks

▪ Make these chunks available to the program

Heap



compass-security.com 12

Heap – Simplified Example



compass-security.com 13

How is this implemented?

▪ The heap implementation gets a (big) block of flat/unstructured memory (page / pages)

▪ Partition the heap/page into bin’s

▪ A bin has chunks of the same size

Heap Introduction



compass-security.com 14

Heap: Memory Layout

Stack

Heap

Code

0xc0000000

0x0804800

0xbfffffff

0x0000000



compass-security.com 15

Heap: Memory Layout

Stack

Heap

Code

0xc0000000

0x0804800

0xbfffffff

0x0000000

Heap



compass-security.com 16

Page:

▪ A memory page

▪ Usually 4k

▪ Can also be 2 Megabytes or other

▪ Allocated via sbrk() or mmap()

Heap: Memory Layout

Page

Page

Page

Heap



compass-security.com 17

Heap: Memory Layout

Page

Page

Page

Heap

32b Chunk

32b Chunk

24b Chunk

24b Chunk

24b Chunk

24b Chunk

16b Chunk

16b Chunk

16b Chunk

16b Chunk

16b Chunk



compass-security.com 18

Heap: Oversimplified example

Heap

16 Byte Bin

24 Byte Bin

32 Byte Bin
32b Chunk

32b Chunk

24b Chunk

24b Chunk

24b Chunk

24b Chunk

P
a

g
e

P
a

g
e

P
a

g
e

16b Chunk

16b Chunk

16b Chunk

16b Chunk

16b Chunk



compass-security.com 19

Heap: Oversimplified example

Heap

ptr = malloc(16);

ptr

16

P
a

g
e

P
a

g
e

P
a

g
e



compass-security.com 20

Heap: Oversimplified example

Heap

ptr2 = malloc(16);

ptr

ptr2

16

16

P
a

g
e

P
a

g
e

P
a

g
e



compass-security.com 21

Heap: Oversimplified example

Heap

ptr3 = malloc(32);

ptr

ptr2

ptr3

32

16

16

P
a

g
e

P
a

g
e

P
a

g
e



compass-security.com 22

Heap: Oversimplified example

Heap

free(ptr);

ptr

ptr2

ptr3

16

32

P
a

g
e

P
a

g
e

P
a

g
e



compass-security.com 23

Heap: Oversimplified example

Heap

ptr4 = malloc(16);

ptr

ptr2

ptr3

16

16

32

ptr4
P

a
g
e

P
a

g
e

P
a

g
e



compass-security.com 24

Recap:

▪ Heap divides big (4k) memory pages into smaller chunks

▪ Heap gives these chunks to the program on request

▪ A pointer to a heap allocation points to the data part (the chunk contains more metadata)

Heap - Recap



compass-security.com 25

Heap Memory Management



compass-security.com 26

Heap Memory Management

How does the Heap

Know which chunks

Are free (to use)?

Heap

ptr2

ptr3

16

32

free

free

free

free

P
a

g
e

P
a

g
e

P
a

g
e



compass-security.com 27

Heap allocator requirements:

▪ Should be quick to fulfill malloc() and free()

▪ Should not waste memory by managing memory

▪ Also: No bugs, correct, low-fragmentation, etc.

Heap Memory Management



compass-security.com 28

▪ Heap allocator requirements:

▪ Should be quick to fulfill malloc() and free()

▪ Should not waste memory by managing memory

▪ Also: No bugs, correct, low-fragmentation, etc.

Heap Memory Management



compass-security.com 29

One possibility:

PHP7 – emalloc

▪ First chunk has management information

▪ Management chunk describes other chunks

▪ Which are free, how big are they etc. 

▪ (ok, emalloc allocates chunks from the OS, 

divides them into pages - so the oppositive

naming convention. That’s a detail). 

Heap Memory Management
Heap

Management chunk

- Free-chunk array

P
a

g
e

Chunk0

Chunk3

Chunk2

Chunk1

Chunk4



compass-security.com 30

Heap could look like this:

Heap Memory Management
Management chunk

Chunk

Chunk

Chunk

Chunk

P
a

g
e

P
a

g
e

P
a

g
e

Management chunk

Management chunk

Chunk

Chunk

Chunk

Chunk



compass-security.com 31

But wait, there’s more!

Heap Memory Management



compass-security.com 32

Ptmalloc2 chunk:

Chunk

Size of previous chunk

Size of chunk

Space

Chunk A

Mem



compass-security.com 33

Ptmalloc2 FREE chunk:

Heap Chunks

Size of previous chunk

Size of chunk

Forward pointer to next chunk

Back pointer to previous chunk

Empty Space

Chunk

Mem



compass-security.com 34

Ptmalloc2 ALLOCATED chunk:

Heap Chunks

Usable Space

Size of previous chunk

Size of chunk

Forward pointer to next chunk

Back pointer to previous chunk

Chunk

Mem



compass-security.com 35

Free chunks close to each other get merged

Heap Chunks



compass-security.com 36

Heap attacks



compass-security.com 37

Heap attack:

Inter-chunk overflow

Heap Attacks: Buffer overflow
Management chunk

Chunk

Chunk

Chunk

Chunk
P

a
g

e
P

a
g

e
P

a
g

e

Management chunk

Management chunk

Chunk

Chunk

Chunk

Chunk



compass-security.com 38

Heap attack:

Inter-chunk overflow with management chunk

Problem:

▪ In-band signalling (again)

▪ Can modify management data of heap allocator

▪ Therefore, can modify behaviour of heap allocator

Heap Attacks: Buffer overflow
Management chunk

Chunk

Chunk

Chunk

Chunk

P
a

g
e

P
a

g
e

P
a

g
e

Management chunk

Management chunk

Chunk

Chunk

Chunk

Chunk



compass-security.com 39

Heap attack:

Inter-chunk overflow with chunk metadata

Problem:

▪ In-band signalling (again)

▪ Can modify management data of heap allocator

▪ Therefore, can modify behaviour of heap allocator

▪ Create fake chunks

▪ Ptmalloc2: Write what where upon free

Heap Attacks: Buffer overflow

Chunk

Chunk

Chunk

Size previous chunk

Size this chunk

Overflowmem

Size previous chunk

Size this chunk

Size previous chunk

Size this chunk



compass-security.com 40

Heap Attacks: Use after free (UAF)

Heap

err = malloc(16)

free(err)

usr = malloc(16);

…

strcpy(usr, “nobody”)

…

strcpy(err, “root err”);

err

16

16

usr

P
a
g
e

P
a
g
e

P
a
g
eU

s
e

-a
ft
e

r-
fr

e
e



compass-security.com 41

Recap:

▪ A buffer overflow on the heap can modify other buffers on the heap

▪ A buffer overflow on the heap can influence memory allocator management data structures (junks etc.)

Heap Attacks



compass-security.com 42

Resources:

▪ http://homes.soic.indiana.edu/yh33/Teaching/I433-2016/lec13-HeapAttacks.pdf

▪ http://www.pwntester.com/blog/2014/03/23/codegate-2k14-4stone-pwnable-300-write-up/

References

http://homes.soic.indiana.edu/yh33/Teaching/I433-2016/lec13-HeapAttacks.pdf
http://www.pwntester.com/blog/2014/03/23/codegate-2k14-4stone-pwnable-300-write-up/

