®
e‘ SECURITY

Exploit Mitigation - PIE

Arbitrary Write

| Overflow Local Vars

'Heap Overflows

| Brute Force

_ I
Exploit
Mitigationsj J Partial RIP Overwrite |
| NOP slide |
> Info Disclosure]

- Ret 2 PLT

DEP

- J

compass-security.com 2

Recap! Exploit Mitigation Exploits

All three exploit mitigations can be defeated by black magic

Easily

Is there a solution?

compass-security.com 3

Exploit Mitigation - PIE

The solution

The solution to all problems... PIE

compass-security.com 5

Exploit Mitigation++

Fix:
= Compile as PIE
» PIE: Position Independent Executable
= Will randomize Code and PLT, too

Note:
» Shared libraries are PIC
» (Position Independent Code)
» Because they don’t know where they are being loaded
= Always randomized, even without PIE

compass-security.com 6

Exploiting: ASLR for code: PIE

T

—
o
X
N
N
N
V)
N
N
V)

Heap

Code Ox 7997997

compass-security.com 7

PIE Executable

S cat test.c
#include <stdio.h>

void func () {
printf ("\n");
}
vold main (void) {
printf ("sp\n", &func);
}
$ gcc -fpic -pie test.c
$./a.out
0x557d9deeb’/ch
S ./a.out
0x5581df9de67ch

compass-security.com 8

PIE Executable

Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align

PHDR 0x0000000000000040 0x0000000000000040 0x0000000000000040
0x00000000000001£8 0x00000000000001£f8 R E 8

INTERP 0x0000000000000238 0x0000000000000238 0x0000000000000238
0x000000000000001c 0x000000000000001c R 1

[Requesting program interpreter: /1ib64/1d-linux-x86-64.s0.2]
LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x00000000000009dc 0x00000000000009dc R E 200000
[...]

Segment Sections...

00
01 .ilnterp
02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gn

u.version .gnu.version r .rela.dyn .rela.plt .init .plt .text .fini .rodata

compass-security.com 9

Exploiting: ASLR for code: PIE

PIE randomizes Code segment base address
PIE randomizes GOT/PLT base address too

No more static locations!

compass-security.com

Defeat Exploit Mitigation: PIE

Arbitrary Write

| Overflow Local Vars

'Heap Overflows

| Brute Force

_ I
Exploit
Mitigationsj J Partial RIP Overwrite |
| NOP slide |
> Info Disclosure]

- Ret 2 PLT

DEP

compass-security.com

D
@

compass-security.com

ASLR vs Information Leak

ASLR assumes attacker can’t get information
What if they can?

Meet: Memory Leak

compass-security.com

Memory Leak /
Information Disclosure

Memory Leak

Memory leak or information disclosure:
» Return more data to the attacker than the intended object size
» The data usually includes meta-data, like:
= Stack pointers
= Return addresses
» Heap-management data
= Etc.

compass-security.com

ASLR vs Memory Leak

char bufl[16] *otr |SFP |EIP

Server:
send (socket, bufl, sizeof(int) * 16, NULL);

* Oups, attacker got 64 bytes back
= Pointer to stack, code, heap
= Can deduce base address

compass-security.com

ASLR vs Memory Leak

char bufl[16] *otr |SFP |EIP
char bufl[16] *otr | SFP |EIP

Exploiting: ASLR for code: PIE

Stack?
______ ReaIStaCk Oxaabbccdd
.................................... Oxddeeffaa
Real Heap
............... Heap?
Real Code —— Oxbfbfbfbf
Code?

compass-security.com

Exploiting: ASLR for code: PIE

libcurses
libc

Mapped libraries

Real Code

| — Oxbfbfbfbf

compass-security.com

Exploiting: ASLR for code: PIE

Attacker:
» Information disclosure / memory leak
= Gains a pointer (Address of memory location)
» From pointer: Deduct base address of segment

= From base address: Can deduct all other addresses

compass-security.com

Exploiting: ASLR for code: PIE

Example: Windows memory disclosure (unpatched, 21.2.17, CVE-2017-0038)

As a consequence, the 16x16/24bpp bitmap is now described by just 4 bytes, which
1s good for only a single pixel. The remaining 255 pixels are drawn based on
Junk heap data, which may include sensitive information, such as private user

data or information about the virtual address space.

Windows gdi32.dll heap-based out-of-bounds reads / memory disclosure

in EMR_SETDIBITSTODEVICE and possibly other records
Reported by mjurczyk@agoodgle.com, Nov 16 Back to list

« Prev 2 of 4 Next:»

In dissueH#757, I described multiple bugs related to the handling of DIBs (Device Independent Bitmaps) embedded in
EMF records, as implemented in the user-mode Windows GDI library (gdi32.dll). As a quick reminder, the DIB-
embedding records follow a common scheme: they include four fields, denoting the offsets and lengths of the DIB
header and DIB data (named offBmiSrc, cbBmiSrc, offBitsSrc, cbBitsSrc). A correct implementation should verify
that:

compass-security.com

GIT ™ (PRUNCESEY

HOW TO SAVE THE PRINCESS BY © toggl
USING & PROGRAMMING

Goon Sqw\o
LANGUAGES
YOU HAVE JAVASCRIPT You SPEND HOURS || oumt meconee wim |
PICKING LIBRARIES, THE FRAMEWORK,
SETTING UP NODE & THE FORT HAS o e
BUILDING A FRAME WORK BEEN ABANDONED

AND THE PRINCESS
FOR THE CASTLE. SAE HGED TH

ANOTHER CASTLE

You HAVE C YOU HAVE A LIBRARY || Yoy RESCUE THE PRINCESS

FOR A CASTLE & HER DOG, HER ENTIRE
A LIBRARY FoR THE WARDROBE 8 EVERYTHING SHE
HAS EVER EATEN...
INCESS -
PZHAERS | FUCK=-DID | FORGET A
G€: Nuu.oTt»:muNAo&? >

compass-security.com

Exploit Mitigation Conclusion

Defeat Exploit Mitigations: TL;DR

Enable ALL the mitigations (DEP, ASLR w/PIE, Stack Protector)

» Defeat ALL the mitigations:
» ROP shellcode as stager to defeat DEP
» Information leak to defeat ASLR
= Non stack-based-stack-overflow vulnerability

compass-security.com

Recap

Information disclosure can eliminate ASLR protection

Which enables ROP to eliminate DEP

compass-security.com

References

References:

* ROP CFI RAP XNR CPI WTF? Navigating the Exploit Mitigation Jungle
= https://bsidesljubliana.si/wp-content/uploads/2017/02/ropcfirapxnrcpiwtf-rodler-bsidesljiubliana2017.pdf

compass-security.com

https://bsidesljubljana.si/wp-content/uploads/2017/02/ropcfirapxnrcpiwtf-rodler-bsidesljubljana2017.pdf

