
compass-security.com 1

Exploit Mitigation - PIE

compass-security.com 2

Exploit

Mitigations

DEP

PIE

ASLR

Stack

Canary

ASCII Armor

Partial RIP Overwrite

Brute Force

Heap Overflows

Overflow Local Vars

Arbitrary Write

NOP Slide

Info Disclosure

Ret 2 PLT

ROP

compass-security.com 3

All three exploit mitigations can be defeated by black magic

Easily

Is there a solution?

Recap! Exploit Mitigation Exploits

compass-security.com 4

Exploit Mitigation - PIE

compass-security.com 5

The solution to all problems… PIE

The solution

compass-security.com 6

Fix:

▪ Compile as PIE

▪ PIE: Position Independent Executable

▪ Will randomize Code and PLT, too

Note:

▪ Shared libraries are PIC

▪ (Position Independent Code)

▪ Because they don’t know where they are being loaded

▪ Always randomized, even without PIE

Exploit Mitigation++

compass-security.com 7

Exploiting: ASLR for code: PIE

Stack

Heap

Code 0x???????

Mappings

PLT

0x????????

0x???????

compass-security.com 8

$ cat test.c

#include <stdio.h>

void func() {

printf("\n");

}

void main(void) {

printf("%p\n", &func);

}

$ gcc -fpic -pie test.c

$./a.out

0x557d9dee57c5

$./a.out

0x5581df9d67c5

PIE Executable

compass-security.com 9

Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align

PHDR 0x0000000000000040 0x0000000000000040 0x0000000000000040

0x00000000000001f8 0x00000000000001f8 R E 8

INTERP 0x0000000000000238 0x0000000000000238 0x0000000000000238

0x000000000000001c 0x000000000000001c R 1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x00000000000009dc 0x00000000000009dc R E 200000

[…]

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gn

u.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata

PIE Executable

compass-security.com 10

PIE randomizes Code segment base address

PIE randomizes GOT/PLT base address too

No more static locations!

Exploiting: ASLR for code: PIE

compass-security.com 11

Defeat Exploit Mitigation: PIE

compass-security.com 12

Exploit

Mitigations

DEP

PIE

ASLR

Stack

Canary

ASCII Armor

Partial RIP Overwrite

Brute Force

Heap Overflows

Overflow Local Vars

Arbitrary Write

NOP Slide

Info Disclosure

Ret 2 PLT

ROP

compass-security.com 13

compass-security.com 14

ASLR assumes attacker can’t get information

What if they can?

Meet: Memory Leak

ASLR vs Information Leak

compass-security.com 15

Memory Leak /

Information Disclosure

compass-security.com 16

Memory leak or information disclosure:

▪ Return more data to the attacker than the intended object size

▪ The data usually includes meta-data, like:

▪ Stack pointers

▪ Return addresses

▪ Heap-management data

▪ Etc.

Memory Leak

compass-security.com 17

Server:

send(socket, buf1, sizeof(int) * 16, NULL);

▪ Oups, attacker got 64 bytes back

▪ Pointer to stack, code, heap

▪ Can deduce base address

ASLR vs Memory Leak

char buf1[16] EIPSFP*ptr

compass-security.com 18

send(socket, buf1, sizeof(int) * 16, NULL);

ASLR vs Memory Leak

char buf1[16] EIPSFP*ptr

char buf1[16] EIPSFP*ptr

compass-security.com 19

Exploiting: ASLR for code: PIE

Stack?

Heap?

Code?
0xbfbfbfbf

0xaabbccdd

0xddeeffaa

Real Stack

Real Heap

Real Code

compass-security.com 20

Exploiting: ASLR for code: PIE

0xbfbfbfbf
Real Code

libc

libcurses

M
a
p

p
e

d
 l
ib

ra
ri
e
s

compass-security.com 21

Attacker:

▪ Information disclosure / memory leak

▪ Gains a pointer (Address of memory location)

▪ From pointer: Deduct base address of segment

▪ From base address: Can deduct all other addresses

A note on code -> libraries:

▪ Distance between code segment and mapped libraries is usually constant

▪ Got SIP? Can use LIBC gadgets…

Exploiting: ASLR for code: PIE

compass-security.com 22

Example: Windows memory disclosure (unpatched, 21.2.17, CVE-2017-0038)

As a consequence, the 16x16/24bpp bitmap is now described by just 4 bytes, which

is good for only a single pixel. The remaining 255 pixels are drawn based on

junk heap data, which may include sensitive information, such as private user

data or information about the virtual address space.

Exploiting: ASLR for code: PIE

compass-security.com 23

compass-security.com 24

Exploit Mitigation Conclusion

compass-security.com 25

Enable ALL the mitigations (DEP, ASLR w/PIE, Stack Protector)

▪ Defeat ALL the mitigations:

▪ ROP shellcode as stager to defeat DEP

▪ Information leak to defeat ASLR

▪ Non stack-based-stack-overflow vulnerability

Defeat Exploit Mitigations: TL;DR

compass-security.com 26

Information disclosure can eliminate ASLR protection

Which enables ROP to eliminate DEP

Recap

compass-security.com 27

References:

▪ ROP CFI RAP XNR CPI WTF? Navigating the Exploit Mitigation Jungle

▪ https://bsidesljubljana.si/wp-content/uploads/2017/02/ropcfirapxnrcpiwtf-rodler-bsidesljubljana2017.pdf

References

https://bsidesljubljana.si/wp-content/uploads/2017/02/ropcfirapxnrcpiwtf-rodler-bsidesljubljana2017.pdf

