®
e‘ SECURITY

Exploit Mitigations

Exploit Mitigations: Recap

You know how to exploit a buffer overflow.

L|ke it’S 1996 .00 Phrack 49 Oo.

L ets take yOU to 2016 Volume Seven, Issue Forty-Nine
File 14 of 16

BugTraq, reet, and Underground.Org
bring you

PO 0000000000000 00000000 000000.0004804
Smashing The Stack For Fun And Profit
HOROCHICORRK RO IR XA KXK

by Aleph One
alephl@underground.org

“smash the stack’™ [C programming] n. On many C implementations

it is possible to corrupt the execution stack by writing past

the end of an array declared auto in a routine. Code that does
this is said to smash the stack, and can cause return from the
routine to jump to a random address. This can produce some of
the most insidious data-dependent bugs known to mankind.

Variants include trash the stack, scribble the stack, mangle

the stack; the term mung the stack is not used, as this is

never done intentionally. See spam; see also alias bug,

fandango on core, memory leak, precedence lossage, overrun screw.

compass-security.com 2

Exploit Mitigations

compass-security.com 3

Content

Intel Architecture
: : Buffer Overfl
Memory Layout uner Lvertiow
) I
C Arrays \
: BoF Exploit
J
" Assembler)= —)
5 [Remote Exploit
> Shellcode J
. Exploit Mitigations
[Functlon Calls [P g$ }

[Debugging [Defeat Exploit Mitigations }

|
|
|
|
compass-security.com 4

Exploit Mitigations: Content

DEP
Stack Canary

ASLR
ASCIl Armor

Exploit Mitigations: Security News

Subject:
From:

OpenBSD

anti-ROP mechanism in libc

Theo de Raadt <deraadt () openbsd ! org>

2016-04-25 13:10:25

26067.1461589825 () cvs ! openbsd ! org

[Downlcocad message RAW]

at each boot.
using.

This change randomizes the order of symbels in libe.so at boot time.

This is done by saving all the independent .so sub-files inte an ar
archive, and then relinking them into a new libec.so in random order,

The cost is less than a second on the systems I am

Grsecurity/PAX

RAP is here. Public demo in 4.5 test patch and commercially available today!

April 28, 2016

Today's release of grsecurity® for the Linux 4.5 kernel marks an important milestone in the project's history. It
is the first kernel to contain RAP, a defense mechanism against code reuse attacks. RAP was announced to the

Linux Kernel 4.6

Currently on i386 and on X86 64 when emulating X686 32 in legacy mode, only the stack and the
execufable are randomized but not other mmapped files (libraries, vD50, elc.). This pafch enables

- randomization for the libraries, vDS0O and mmap requests on i386 and in X86 32 in legacy mode.

Exploit Mitigations: Recap

char buffer|64]

SIP

Exploit Mitigations: Recap

What is required to create an exploit?
= Executable Shellcode
= Aka “Hacker instructions”
» The distance from buffer to SIP
» Offset for the overflow
» The Address of shellcode
* in memory of the target process

compass-security.com 8

—>[ASCII Armor] >Z Arbitrary Write |
>i Overflow Local Vars
Stack Heap Overflows |
Canary > Brute Force)
Exploit .
Mitigations W J| Partial RIP Overwrite
“| ASLR I [NOP Slide \
PIE o > Info Disclosure]
e > Ret 2 PLT)
DEP , P .
| > ROP

compass-security.com

Exploit Mitigations

Best Exploit Mitigation:
(Security relevant-) Bugs should not exist at all

Write secure code!
» Use secure libraries
= Perform Static Analysis of the source code
» Perform Dynamic Analysis of programs
» Perform fuzzing of input vectors
» Have a secure development lifecycle (SDL)
» Manual source code reviews

Developers, developers, developers

Not the focus of this lessons

compass-security.com

Practical Exploit Mitigations

Our focus: “Sysadmin/user view”

What can WE do to improve security on our systems?
= Without fixing other people’s code

Two things:
= Compile Time Protection
= Runtime Protection

compass-security.com

Practical Exploit Mitigations

compass-security.com 12

Practical Exploit Mitigations

Compile Time:
= Stack canaries
= PIE

Runtime:
= ASLR
= DEP
= ASCII Armor

compass-security.com

Exploit Mitigation: DEP

iArbitrary Write
{ Overflow Local Vars
ZHeap Overflows
>iBrute Force
Exploit
Mitigations ‘ W { Partial RIP Overwrite j
ASLR J ;; {NOP Slide
PIE >Clnfo Disclosure]

- Ret 2 PLT

compass-security.com

Exploit Mitigations: Recap

char buffer[64]

SIP

DEP

DEP — Data Execution Prevention

= Aka: No-Exec Stack
= Aka: WAX (Write XOR eXecute)(OpenBSD)
= Aka: NX (Non-Execute) Bit

32 bit (x86)
= Since 386
» “saved” Xecute bit (Read / Write are available)

AMDG64 (x86-64)
= introduced NX bit in HW
= Or kernel patches like PaX
» For 32 bit, need PAE (Physical Address Extension, 32->36bit)

Linux
= Support in 2004, Kernel 2.6.8, default active

compass-security.com

DEP

Memory regions
= Are mapped with permissions
= Like files
* R Read
= W Write
= X eXecute

= DEP removes X bit from memory which do not contain code
= Stack
= Heap
» (Possibly others)

compass-security.com

Anti-Exploitation: No-Exec Stack
Without DEP:

Permissions: rwx

4

jmp *bufl

Anti-Exploitation: No-Exec Stack
With DEP:

Permissions: rw-

oo cone coo cone coe [t

<~ jmp*bufl

I

"‘Segmentation Fault”

DEP Example

(gdb) r
Program received signal SIGSEGV, Segmentation fault.
Oxbffffdec in 2?2 ()

(gdb) info proc mappings
Mapped address spaces:

[...]
Oxbffdf000 0xc0000000 0x21000 0x0 [stack]

(gdb) i r eip
eip Oxbffffdec Oxbffffdec

compass-security.com

Anti-Exploitation: No-Exec Stack

$ gcc system.c -o system && readelf -1 system

Program Headers:

Type Offset VirtAddr MemSiz Flg Align
PHDR Ox000034 0x08048034 0x00120 R E 0x4
INTERP Ox000154 0x08048154 0x00013 R 0Ox1
LOAD OX000000 Ox08048000 Ox005d0 R E 0x1000
LOAD Ox000114 0x08049f14 0x00108 RW ©x1000
DYNAMIC Ox000128 Ox08049128 0x000c8 RW ©Ox4
NOTE OXx000168 O0x08048168 0x00044 R 0Ox4
GNU_EH FRAME 0x0004d8 0x080484d8 0x00034 R 0©x4
GNU_STACK OX000000 Ox00000000 Ox00000 RW Ox4

GNU_RELRO Ox000114 0x08049f14 Ox000ec R 0Ox1

compass-security.com

Anti-Exploitation: No-Exec Stack

$ gcc system.c -z execstack -o system
$ readelf -1 system

Program Headers:

Type Offset VirtAddr MemSiz Flg Align
PHDR Ox000034 0x08048034 0x00120 R E 0x4
INTERP Ox000154 0x08048154 0x00013 R 0Ox1
LOAD OX000000 Ox08048000 Ox005d0 R E 0x1000
LOAD Ox000114 0x08049f14 0x00108 RW ©x1000
DYNAMIC Ox000128 Ox08049128 0x000c8 RW ©Ox4
NOTE OXx000168 0x08048168 0x00044 R Ox4
GNU_EH FRAME 0x0004d8 0x080484d8 0x00034 R 0x4
GNU_STACK OX000000 O0x00000000 0x00000 RWE Ox4

GNU_RELRO Ox000114 0x08049f14 Ox000ec R 0Ox1

compass-security.com

Anti-Exploitation: No-Exec Stack

Stack rw-

Heap rw-

Code r-X
0Xx0000000

compass-security.com

Anti-Exploitation: DEP - Memory

Memory Segment: TLB: RAM:
4kb r'W- 4kb
4Kb = T'W- 4kb
4Kkb = F'W- 4kb
4kb 1 W- | 4kb

4Kkb
e.g. Stack 4kb

Anti-Exploitation: DEP - Memory

Userspace
» Program sees 232 (or 2"64) 1-byte memory locations
= Cannot access it until it is “mapped”
= Mapping is based on pages
= Pages are 4096 bytes (4kb) size

Kernelspace
= Manages RAM
= Also sees 232 bytes (for itself)
» “Maps” userspace pages to physical pages
» Viathe TLB

compass-security.com

Anti-Exploitation: DEP - Memory
Process start Process Kernel

No memory mappings

compass-security.com

Anti-Exploitation: DEP - Memory
Process started Pl'oceSS RAM

Memory is mapped

compass-security.com

Anti-Exploitation: No-Exec Stack

GCC compiles automatically with no-exec stack

compass-security.com 29

Recap! DEP

Exploit Mitigation — DEP
= Makes it impossible for an attacker to execute his own shellcode
» Code segment: eXecute (no write)
» Heap, Stack: Write (no execute)

compass-security.com

Recap! DEP

Exploit Mitigation — DEP
= No-no: Write AND Execute
= Sometimes necessary
» Interpreted Languages
= £.g. Java
= Or JavaScript
= Ahem *Browser* dhem

compass-security.com

Exploit Mitigation — Stack Protector

>Z Arbitrary Write
{ Overflow Local Vars
> Heap Overflows)
- — Brute Force |
Exploit .
Mitigations W >(Partial RIP Overwrite |
ASLR J .| NOP Slide)
PIE] > Info Disclosure J
T > Ret 2 PLT)
> DEP | P :
N o 2 ROP)

compass-security.com

Exploit Mitigations: Recap

char buffer[64]

Exploit Mitigation — Stack Protector

Aka:
» SSP: Stack Smashing Protector
» Stack Cookie
» Stack Canary

compass-security.com

Exploit Mitigation — Stack Protector

Secret value in front of control data
A value unknown to the attacker

Checked before performing a “ret”
= When returning from a function; “return;”

= Before using SIP

1f (secret on stack == global secret) {
return;

} else {
crash();

compass-security.com

Exploit Mitigation — Stack Protector

char bufl[16]

EIP

Exploit Mitigation — Stack Protector

char bufl[16]

EIP

char bufl[16]

secret

EIP

Exploit Mitigation — Stack Protector

char bufl[16]

secret

EIP

char bufl[16]

55667/

FF12

Exploit Mitigation — Stack Protector

char bufi[16] 55667 |FF12

¥

“Segmentation Fault” BBBB |= 55667

Exploit Mitigation — Stack Protector

Stack Protector

» GCC patch
» First: StackGuard in 1997
» Then: ProPolice in 2001, by IBM

» Finally: Re-implement ProPolice in 2005 by RedHat
» introduced in GCC 4.1
= -fstack-protector

» Update: Better implementation by Google in 2012
» -fstack-protector-strong

= Enabled since like forever by default
= most distributions
* most packages

compass-security.com

Exploit Mitigation — Stack Protector

When does the stack protector change?
= On execve()
= (replace current process with a ELF file from disk)
= NOT on fork()
= (copy current process)

compass-security.com

Exploit Mitigation — Stack Protector

Stack canary properties:
= Not predictable
» Be located in a non-accessible location
= Cannot be brute-forced
= Should contain at least one termination character

compass-security.com

Exploit Mitigation — Stack Protector

Stack protector in ASM, static analysis:

// get
mov , $eax

// compare with reference wvalue
xXor %gs:0x14, %eax

// skip next instruction if ok
je 0x804846e <bla+58>

// was not ok - crash/exit program
call 0x8048340 < stack chk fail@plt>

compass-security.com

Exploit Mitigation — Stack Protector

Stack protector in ASM, dynamic analysis:

=> 0x08048458 <+36>: call 0x8048350 <strcpylplt>
0x0804845d <+41>: mowv -0xc (5ebp) , 3eax
0x08048460 <+44>: XOr 3gs:0x14, Seax
0x08048467 <+51>: je 0x804846e <blat+58>
0x08048469 <+53>: call 0x8048340 < stack chk fail@plt>
(gdb) x/1x Sebp-0xc
Oxbffffbcc: 0x2£140600
(gdb) info auxv
25 AT RANDOM Address of 16 random bytes Oxbffff7bb

(gdb) x/1x Oxbffff7bb
Oxbffff/bb: O0x2f1406ae

compass-security.com

Stack Smashing Example

$./strcpy AAAAAAAAAAAAA

*** stack smashing detected ***: | /strcpy terminated

======= Backtrace: =========
/1ib/1386-1linux-gnu/libc.so.6(fortify fail+0x45) [0xb76££095]
/1ib/i386-1inux-gnu/libc.so.6 (+0x10404a) [Oxb76ff04a]
./strcpy[0x804846e]

./strcpy[0x8048489]
/1ib/1386-1linux-gnu/libc.so.6(libc start main+0xf3) [0xb7614533]
./strcpy[0x80483al]

======= Memory map: ========

compass-security.com

Stack Smashing Example

(gdb) disas overflow
Dump of assembler code for function overflow:

0x08048434 <+0>: push sebp
0x08048435 <+1>: mov sesp, sebp
0x08048437 <+3>: sub S50x38, %esp

[...]
0x08048458 <+36>: call 0x8048350 <strcpylplt>
0x0804845d <+41>: mov -0xc (%ebp) , Seax
0x08048460 <+44>: XOr %9s:0x14, seax
0x08048467 <+51>: Jje 0x804846e <overflow+58>
0x08048469 <+53>: call 0x8048340

< stack chk fail@plt>

0x0804846e <+58>: leave
0x0804846f <+59>: ret

compass-security.com

Exploit Mitigation — Stack Protector

Stack Canary

compass-security.com

Exploit Mitigation — Stack Protector

Arrival: Canary

N MNANNNLV NI/ / /7 /7 / 248

compass-security.com 49

Exploit Mitigation: ASLR

—>[ASCII Armor] >Z Arbitrary Write
>i Overflow Local Vars
Stack 'Heap Overflows |
Canary > Brute Force)
Exploit .
Mitigations J| Partial RIP Overwrite |
T | NOP Slide \
PIE o > Info Disclosure]
I — *Ret 2 PLT)
DEP , P .
; > ROP)

compass-security.com

Exploit Mitigations: Recap

char buffer|64]

SIP

Exploit Mitigation - ASLR

Code execution is surprisingly deterministic

» E.g. Network service:
= fork()
» Parse incoming data
= Buffer Overflow is happening at module X line Y

* On every exploit attempt, memory layout looks the same!
= Same stack/heap/code layout
» Same address of the buffer(s)

» ASLR: Address Space Layout Randomization
» Introduces randomness in memory regions

compass-security.com

Memory Layout
Oxbfffffff
Stack
Heap
Code
Ox0804800

compass-security.com

Without ASLR

Memory Layout

Y

X
v
v
v
v
v
v
v
v

R

o

X
v
v
v
v
v
v
v
v

0x0804800

With ASLR

compass-security.com

Memory

_ayout

Stack

Heap

Code

0x0804800

With ASLR, #1

Memory

_ayout

Stack

Heap

Code

0x0804800

With ASLR, #2

Exploit Mitigation - ASLR
OxAAOQO

OxAAQ0

Exploit Mitigation - ASLR
OxBBOO

OxBBOO

“Segmentation Fault”

AAQ0 '=BBOO0

Exploit Mitigation - ASLR

Randomness is measured in entropy
= Several restrictions
» Pages have to be page aligned: 4096 bytes = 12 bit

= Very restricted address space in x32 architecture
= ~8 bit for stack (256 possibilities)

= Much more space for x64
= ~22 bit for stack

compass-security.com

Exploit Mitigation - ASLR

Default ASLR:
= Stack
» Heap
= Libraries (new!)

Re-randomization
= ASLR only applied on exec() [exec = execute new program]
= Not on fork() [fork = copy]

compass-security.com

Recap! ASLR

Randomize Memory Layout

Attacker can’t call/reference what he cant find

compass-security.com

Arbitrary Write

| Overflow Local Vars

:Heap Overflows

| Brute Force

Exploit .
Mitigations W >(Partial RIP Overwrite |
ASLR J — | NOP Slide)
PIE > Info Disclosure]
> Ret 2 PLT
DEP)
ROP

compass-security.com

Exploit Mitigation: ASCIlI Armor

ASCII Armor:
= Maps Library addresses to memory addresses with null bytes

compass-security.com

Exploit Mitigation: ASCIlI Armor

ASCII Armor:
= Maps Library addresses to memory addresses with null bytes

Why null bytes?
* In C, Null bytes are string determinator
= strcpy, strcat, strncpy, sprintf, ...

strlen(AAAA\OOBBBB\0O) = 4

compass-security.com

Exploit Mitigation: ASCIlI Armor

(gdb) info file
Ox0000000000400980
X000V 400830
OXx0000VV400980
Ox000000000V60118
X000V 61200

Ox00007ffff7b9ed80

Ox0000000000400d92
BXx0000000VV400980
Ox0000000000400d92
BXx00000000V0601200
Ox00000000006012b8

Ox00007ffff7b9eff8

/1ib/x86 _64-1inux-gnu/libc.so.6

Ox00007ffff7b9f000 - Ox00007ffff7b9fO78
/1ib/x86 _64-1inux-gnu/libc.so.6

is
is
is
is
is

is

is

.text
plt
.text
.got
.got.plt

.got in

.got.plt in

compass-security.com

Exploit Mitigation: ASCIlI Armor

Recap:
= Putting important stuff at addresses with 0 bytes breaks strcpy etc.

compass-security.com

Exploit Mitigation - Conclusion

Arbitrary Write

| Overflow Local Vars

:Heap Overflows

| Brute Force

Exploit
Mitigations

()

' >{ Partial RIP Overwrite

1 _ J

NOP Slide

1 N\ _J

| Info Disclosure]

\ 4

\ 4

PIE

>/ Ret 2 PLT

compass-security.com

Recap! All Exploit Mitigations

Stack canary: detects/blocks overflows
DEP: makes it impossible to execute uploaded code
ASLR: makes it impossible to locate data

ASCII Armor: makes it impossible to insert certain data

compass-security.com

Recap! All Exploit Mitigations

USER FRIENDLY by IlLL3iad

e x
Il %" Y
HOSE THE ALOZRLY! BLAH 5 AHHEHHL PR SERVER
- £ TEACHINK THEM NOW

GRRRRRRRRR! : NOT TO BE MESSINK |spangodéspanbox] § su
AM HATINK SPAM. . -
HATINK. HATINK § -~ sU: user root does not exist
HATINK [T/ 5 2,

= o

3

S

Gl = =

% RAPPITY | _— -=

2 TAPPITY o [|

Foy

3

compass-security.com

Anti Exploiting in Linux

How is the state of Exploit Mitigations in Linux?

Easy: Everything active by default!

ASLR: System-level
DEP: System level

Stack Canary: Per-program (3" party programs?)

compass-security.com

References

https://www.elttam.com.au/blog/playing-with-canaries/

= Playing with canaries
= Looking at SSP over several architectures.

compass-security.com

https://www.elttam.com.au/blog/playing-with-canaries/

