SECURITY

Fuzzing

Compass Security Schweiz AG Tel +41552144160
Werkstrasse 20 Fax +4155 2144161
Postfach 2038 team@csnc.ch
CH-8645 Jona www.csnc.ch

®

Fuzzing
SECURITY

1/ 1

“to fuzz”, "write a fuzzer”
How to find bugs nowadays:

Mutate/generate data
to trigger application crash or unexpected behaviour

© Compass Security Schweiz AG www.csnc.ch Slide 2

Fuzzing

SECURITY

Mutation:
+ Modify existing test samples
+ Shuffle, change, erase, insert

Generation:
+ Define new test sample based on models, templates, RFCs or documentation

© Compass Security Schweiz AG www.csnc.ch Slide 3

Fuzzing: Mutation

S

SECURITY

Mutation fuzzing examples:
+ Ffmpeg: Movie files
+ Winamp: MP3 files
+ Antivirus: ELF files

Take an input file, modify it a bit, continue

SubchunklSize = 16 MumChannels = 7

ChunkSize = 2034 AudioFormat = 1 (PCM) \
fmt subchunk « “h ¥
s a0 18 20038 99 o0 5001 0016 00
f m t []
ByteRate = 58200 BitsPerSample = 15 .
SampleRate = 22050) BlockAlign = 4 Subchunk2Size = 2045

data subchunk

¥ o
22 56 00 0088 58 01 00x04 00 64 61 ?4 61 OO 08 00 00 OO 00 OO 00

sample 1

&8 do £y de Bde B GO GhiEl D e il D Al e d 6

L,_v_,-r L,_v_,-r L'_V_'J* *L'_V_'J ?L‘_‘\f’_’[L,_V_,-r

sample 2 sample 3 sample 4 sample 5 sample & sample 7

© Compass Security Schweiz AG www.csnc'ight channel samples left channel samples Slide 4

®

Fuzzing: Generation
SECURITY

Generation fuzzing:
+ Browser: JavaScript
+ Browser: HTML

Cannot just bit flip etc, as it is not a binary protocol

alert (1) ;
4+ s valid:

allrt (e);
+ is garbage

© Compass Security Schweiz AG www.csnc.ch Slide 5

HTTP RFC

g SECURITY

5 Request

A request message from a client to a server includes, within the
first line of that message, the method to be applied toc the resource,
the identifier of the resource, and the protocol wversion in use.

Request = Request-Line ; Section 5.1
*(({ general-header ; Secticn 4.5
| request-header ; Secticon 5.3
| entity-header) CRLF) ; Section 7.1
CRLF
[message-body] i Secticn 4.3

5.1.1 Method

The Method token indicates the method to be performed on the
resource identified by the Regquest-URI. The method is case-sensitive.

Method = "0OPTIONS™ 3 Section 9.2
| "GET" ; Section 9.3
| "HEAD" ; Section 9.4
| "POST" ; Section 9.5
- "PUTT : Secticn 9.6
| "DELETE" ; Section 9.7
| "TRACE" ; Section 9.8
| "CONMECT™ ; Section 9.9

| extension-method
extension-method = tocken
& CUIIPASS DECUTILY DUTIWEIZ AL WWW.CSIIC.CIN Slide 6

HTTP RFC

HTTP-date
rfcll23i-date
rfc858-date
asctime-date
datel

date2

date3

time

wkday
weekday

month

SECURITY

rfcll23-date | rfc858-date | asctime-date

wkday "," SP datel SP time SP "GMT"
weekday "," SP date2 SP time SP "GMT"
wkday SP date3 SP time SP 4DIGIT
2DIGIT SP month SP 4DIGIT

; day month year (e.g., 82 Jun 1982)
2DIGIT "-" month "-" 2DIGIT

; day-month-year (e.g., 82-Jun-82)
month SP (2DIGIT | { SP 1DIGIT))

; month day (e.g., Jun 2)

2DIGIT ":" 2DIGIT ":" 2DIGIT

y beieg:ee - 22:59:59

"Mon™ | "Tue" | "Wed"

"Thu" | "Fri" | "Lat” | "Sun”

"Monday™ | “TUEEday" | "Wednesday"

"Thursday" | Frlday | "Saturday"” | "Sunday"
“Jan" | "Feb" | "Mar" | "apr"

"May" | "Jum™ | "]ul” | "aug™

"sep” | "oOct" | "N | "Dec"

© Compass Security Schweiz AG www.csnc.ch Slide 7

SECURITY

Compiler Flags

Compass Security Schweiz AG Tel +41552144160
Werkstrasse 20 Fax +4155 2144161
Postfach 2038 team@csnc.ch
CH-8645 Jona www.csnc.ch

®

Compiler Flags S

SECURITY

Compiler options to enable advanced error detection routines
+ GCC
+ Clang

Will slow down the program massively
Will find bugs which do not directly lead to crash

Use together with fuzzing

© Compass Security Schweiz AG www.csnc.ch Slide 9

Compiler Flags

AddressSanitizer (ASAN)
—fsanitize=address

+

+++++ 4+

Fast memory error detector

Out-of-bounds access to heap, stack, globals
Use-after-free

Use-after-return

Use-after-scope

Double free, invalid free

For testing only (do not compile public releases with it!)

UndefinedBehaviourSanitizer (Bsan)

—fsanitize=undefined

+
+
+

Finds various kinds of undefined behaviour
Null ptr, signed integer overflow, ...
For testing only

© Compass Security Schweiz AG www.csnc.ch

S

SECURITY

Slide 10

®

SECURITY

Compass Security Schweiz AG Tel +41552144160
Werkstrasse 20 Fax +4155 2144161
Postfach 2038 team@csnc.ch
CH-8645 Jona www.csnc.ch

AFL

american fuzzy lop (2.38b)

American fuzzy lop is a security-oriented fuzzer that employvs a novel type of compile-time instrumentation and genetic
algorithms to automatically discover clean, interesting test cases that trigger new internal states in the targeted binary.
This substantially improves the functional coverage for the fuzzed code. The compact synthesized corpora produced by
the tool are also useful for seeding other, more labor- or resource-intensive testing regimes down the road.

american fuzzy lop 0.47b (readpng)

process timing overall results
[' : 0 days, 0 hrs, 4 min, 43 sec . ne :
- 0 days, 0 hrs, 0 min, 26 sec tal hs : 195
none seen yet ' ' -0
0 days, 0 hrs, 1 min, 51 sec unig h 1
map coverage
38 (19.49%) ' ' 1 1217 (7.43%)
0 (0.00%) | er : 2.55 bits/tuple
stage progress findings in depth
now ' interest 32/8 . hs : 128 (65.64%)
0/9990 (0.00%) \ ! : 85 (43.59%)
654k : : 0 (0 unique)
X 2306/sec 1 h - 1 (1 unique)
fuzzing strategy yields path geometry
b1 ' : 88/14.4k, 6/14.4k, 6/14.4k els @ 3
0/1804, 0/1786, 1/1750 ndi - 178
31/126k, 3/45.6k, 1/17.8k Fav : 114
1/15.8k, 4/65.8k, 6/78.2k im l
34/254k, 0/0
2876 B/931 (61.45% gain)

Compared to other instrumented fuzzers, afl-fuzz is designed to be practical: it has modest performance overhead, uses a

variety of highlv effective fuzzing strategies and effort minimization tricks, requires essentiallv no configuration, and

seamlessly handles complex, real-world use cases - say, common image parsing or file compression libraries.

AFL

S

SECURITY

https://lcamtuf.blogspot.ch/2014/08/a-bit-more-about-american-fuzzy-lop.html

Fuzzing is one of the most powerful strategies for identifying security issues in real-world software. Unfortunately, it also offers
fairly shallow coverage: it is impractical to exhaustively cycle through all possible inputs, so even something as simple as setting

three separate bytes to a specific value to reach a chunk of unsafe code can be an insurmountable obstacle to a typical fuzzer.

There have been numerous attempts to solve this problem by augmenting the process with additional information about the

behavior of the tested code. These techniques can be divided into three broad groups:

* Simple coverage maximization. This approach boils down to trving to isolate initial test cases that offer diverse code

coverage in the targeted application - and them fuzzing them using conventional techniques.

* Control flow analysis. A more sophisticated technique that leverages instrumented binaries to focus the fuzzing efforts

on mutations that generate distinctive sequences of conditional branches within the instrumented binary.

s Static analvsis. An approach that attempts to reason about potentially interesting states within the tested program and

then make educated guesses about the input values that could possibly trigger them.

© Compass Security Schweiz AG www.csnc.ch Slide 13

AFL

S

SECURITY

American fuzzy lop tries to find a reasonable
middle ground between sophistication and
practical utility.

In essence, 1it's a fuzzer that relies on a form
of edge coverage measurements to detect subtle,
local-scale changes to program control flow
without having to perform complex global-scale
comparisons between series of long and winding
execution traces - a common faillure point for
similar tools.

© Compass Security Schweiz AG www.csnc.ch Slide 14

AFL

SECURITY

The output from this instrumentation 1s used as a
part of a simple, vaguely "genetic" algorithm:

1) Load user-supplied initial test cases into the
P queue,
2) Take input file from the queue,
3) Repeatedly mutate the file using a balanced
variety of traditional fuzzing strategies

4) If any of the generated mutations resulted 1in
a new tuple being recorded by the
instrumentation, add mutated output as a new

entry 1n the queue.
5) Go to 2.

© Compass Security Schweiz AG www.csnc.ch Slide 15

AFL

S

SECURITY

What does this all mean?
4+ User gets several representative example files (e.g. valid WAV files)
4+ Put them into a directory
+ AFL will:
+ find similarities of these files
create new input files based on the existing
start the target program with these input files
check which code path has been taken in the target program (coverage)
check if the program crashes
+ Repeat
+ Result: Input files and corresponding core files

+ 4+ + 4+

© Compass Security Schweiz AG www.csnc.ch Slide 16

AFL

SECURITY

AFL works best with source code provided
+ But, can use gemu for binary-only programs

AFL can work with network servers
+ Some coding required

while (go):
req = get_request()
process(req)

To integrats AFL persistent mode, all you have to do is modify the program to do this:

while (go)
put_request{read(file)) // AFL
req = get_request()
process(req)
notify fuzzer() // AFL

© Compass Security Schweiz AG www.csnc.ch Slide 17

SECURITY

Fuzzing

Compass Security Schweiz AG Tel +41552144160
Werkstrasse 20 Fax +4155 2144161
Postfach 2038 team@csnc.ch
CH-8645 Jona www.csnc.ch

®

Fuzzing

S

SECURITY

Fuzzing problems:
+ Should be fast
Provide good coverage (of the target program control flow)
Find edge cases
Don’t get stuck in a local maximum

+ 4+ +

+

For bugs found:
+ Reduce / Minimize testcase
+ Remove “identical bug” testcases
+ Number/identify them (can be thousands)
+ Check for exploitability

© Compass Security Schweiz AG www.csnc.ch Slide 19

®

Fuzzers

SECURITY

libFuzzer
Hungfuzz
Peach Fuzz

Trinity

© Compass Security Schweiz AG www.csnc.ch Slide 20

SECURITY

DARPA CDC

Compass Security Schweiz AG Tel +41552144160
Werkstrasse 20 Fax +4155 2144161
Postfach 2038 team@csnc.ch
CH-8645 Jona www.csnc.ch

CBC

S

SECURITY

DARPA Cyber Grand Challenge 2016

+

+ 4+ +

+

Like the autonomous car challenge
Teams create an autonomous system to attack and defend programs
Programs are not real x86, but a more simplistic version
Find bugs

+ Patch bugs in your teams computers

+ Exploit bugs in the other team computers
Some serious HW (one rack per team, ~1000 cores, 16TB RAM)
Finals @ Defcon Las Vegas 2016 (I was there!)

© Compass Security Schweiz AG www.csnc.ch Slide 22

SS

SECURITY

.

CDC Shellphish

SECURITY

Shellphish CRS 6“((((’({(5&(

—

proposed
patches

Patching

|
|
: Automatic roposed |
I Vulnerability Prop i :
. s exploits I
: Finding I
|
: 4 N
| :
vulnerable |’ N Automatic | |
binary l Testing :
' |
' _ |
|
l N :
|
I Automatic :
, |
' |
' |

patched
binary

20 Slide 24

CDC Shellphish

S

SECURITY

Automatic Vulnerability Discovery 6“(((@(«5((

“How do | crash a binary?”

|

“How do | trigger a condition X in a binary?”

Dynamic Analysis/Fuzzing Symbolic Execution

A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 22

Slide 25

®

®

CDC Shellphish G‘MBASS
SECURITY

Dynamic Analysis/Fuzzing 6“(((9(&'5‘(

e How do I trigger the condition: “You win!" is printed?

x = int(input()) o Try“1” — “You lose!”
if x >= 10:
1f x < 100: o o Try"2" — “You lose!”
—» print "You win!
else: o
print "You lose!"
else:
. " " Il n F/ . r.ﬂ'
print "You lose! e Try™0"— “You win!
A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 24

© Compass Security Schweiz AG www.csnc.ch Slide 26

CDC Shellphish CtLMBASS®

Dynamic Analysis/Fuzzing 6“(((@(((5@()

e How do I trigger the condition: “You win!” is printed?

X = int(input())
if x >= 10:
if x == 123456789012:
print "You win!"
else:
print "You lose!"
else:
print "You lose!"”

""" A Dozen Years of Shellphish — from DEFCON to the Cyber Grand Challenge 25

27

CDC Shellphish °
SECURITY

Driller = AFL + angr

© Compass Security Schweiz AG www.csnc.ch Slide 28

SECURITY

Other fuzzing related things...

Compass Security Schweiz AG Tel +41552144160
Werkstrasse 20 Fax +4155 2144161
Postfach 2038 team@csnc.ch
CH-8645 Jona www.csnc.ch

Intentionally break protocols

SECURITY

The future:

https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
Roughtime 1s like a small “chaos monkey” for
protocols, where the Roughtime server
a intentionally sends out a small subset of
responses with various forms of protocol error

© Compass Security Schweiz AG www.csnc.ch Slide 30

https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c
https://cayan.com/developers/blog-articles/how-to-protect-your-api-clients-against-breaking-c

SECURITY

Fuzzing: Recap

Compass Security Schweiz AG Tel +41552144160
Werkstrasse 20 Fax +4155 2144161
Postfach 2038 team@csnc.ch
CH-8645 Jona www.csnc.ch

Fuzzing Recap

Fuzzing is:
+ Finding bugs in programs
+ Especially exploitable bugs
+ By bombard a program with:
+ Mutated/modified valid data
+ Generated semi-valid data

© Compass Security Schweiz AG www.csnc.ch

SECURITY

Slide 32

References

S

SECURITY

http://slides.com/revskills/fzbrowsers

+ Browser Bug Hunting and Mobile (Syscan 360)

Shellphish:
+ http://cs.ucsb.edu/—antoniob/files/hitcon 2015 public.pdf

+ https://media.defcon.orqg/DEF%20CON%2024/DEF%20CON%2024%20prese
ntations/DEFCON-24-Shellphish-Cyber%20Grand%20Shellphish-
UPDATED.pdf

© Compass Security Schweiz AG www.csnc.ch Slide 33

http://slides.com/revskills/fzbrowsers
http://slides.com/revskills/fzbrowsers
http://cs.ucsb.edu/~antoniob/files/hitcon_2015_public.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Shellphish-Cyber Grand Shellphish-UPDATED.pdf

